Which version is faster ?
x * 0.5
or
x / 2
Ive had a course at the university called computer systems some time ago. From back then i remember that mult
Division by a compile-time constant that's a power of 2 is quite fast (comparable to multiplication by a compile-time constant) for both integers and floats (it's basically convertible into a bit shift).
For floats even dynamic division by powers of two is much faster than regular (dynamic or static division) as it basically turns into a subtraction on its exponent.
In all other cases, division appears to be several times slower than multiplication.
For dynamic divisor the slowndown factor at my Intel(R) Core(TM) i5 CPU M 430 @ 2.27GHz appears to be about 8, for static ones about 2.
The results are from a little benchmark of mine, which I made because I was somewhat curious about this (notice the aberrations at powers of two) :
The results were generated from the following bash template:
#include
#include
typedef unsigned long ulong;
int main(int argc, char** argv){
$TYPE arg = atoi(argv[1]);
$TYPE i = 0, res = 0;
for (i=0;i< $IT;i++)
res+=i $OP $ARG;
printf($FMT, res);
return 0;
}
with the $-variables assigned and the resulting program compiled with -O3
and run (dynamic values came from the command line as it's obvious from the C code).