Is there a way to programmatically check if a single C source file is potentially harmful?
I know that no check will y
If you want to make sure it's not calling anything not allowed, then compile the piece of code and examine what it's linking to (say via nm). Since you're hung up on doing this by a "programmatic" method, just use python/perl/bash to compile then scan the name list of the object file.
There's not a lot you can do about buffer overwrites for statically defined buffers, but you could link against an electric-fence type memory allocator to prevent dynamically allocated buffer overruns.
You could also compile and link the C-file in question against a driver which would feed it typical data while running under valgrind which could help detect poorly or maliciously written code.
In the end, however, you're always going to run up against the "does this routine terminate" question, which is famous for being undecidable. A practical way around this would be to compile your program and run it from a driver which would alarm-out after a set period of reasonable time.
EDIT: Example showing use of nm:
Create a C snippet defining function foo which calls fopen:
#include
foo() {
FILE *fp = fopen("/etc/passwd", "r");
}
Compile with -c, and then look at the resulting object file:
$ gcc -c foo.c
$ nm foo.o
0000000000000000 T foo
U fopen
Here you'll see that there are two symbols in the foo.o object file. One is defined, foo, the name of the subroutine we wrote. And one is undefined, fopen, which will be linked to its definition when the object file is linked together with the other C-files and necessary libraries. Using this method, you can see immediately if the compiled object is referencing anything outside of its own definition, and by your rules, can considered to be "bad".