Consider the following example data
library(dplyr)
tmp <- mtcars %>%
group_by(cyl) %>%
summarise(mpg_sum = list(summary(mpg)))
As commented, you can also use the tidy function from package broom:
library(broom)
mtcars %>% group_by(cyl) %>% do(tidy(summary(.$mpg)))
# Source: local data frame [3 x 7]
# Groups: cyl [3]
#
# cyl minimum q1 median mean q3 maximum
# (dbl) (dbl) (dbl) (dbl) (dbl) (dbl) (dbl)
# 1 4 21.4 22.80 26.0 26.66 30.40 33.9
# 2 6 17.8 18.65 19.7 19.74 21.00 21.4
# 3 8 10.4 14.40 15.2 15.10 16.25 19.2