Per https://stackoverflow.com/a/48981834/1840471, this is an implementation of the weighted Gini coefficient in Python:
import numpy as np
def gini(x, weight
Adapting the StatsGini
R function from here:
import numpy as np
import pandas as pd
def gini(x, w=None):
# Array indexing requires reset indexes.
x = pd.Series(x).reset_index(drop=True)
if w is None:
w = np.ones_like(x)
w = pd.Series(w).reset_index(drop=True)
n = x.size
wxsum = sum(w * x)
wsum = sum(w)
sxw = np.argsort(x)
sx = x[sxw] * w[sxw]
sw = w[sxw]
pxi = np.cumsum(sx) / wxsum
pci = np.cumsum(sw) / wsum
g = 0.0
for i in np.arange(1, n):
g = g + pxi.iloc[i] * pci.iloc[i - 1] - pci.iloc[i] * pxi.iloc[i - 1]
return g
This works for large vectors, at least up to 10M rows:
n = 1e7
gini(np.random.rand(n), np.random.rand(n)) # Takes ~15s.
It also produces the same result as the function provided in the question, for example giving 0.2553 for this example:
gini(np.array([3, 1, 6, 2, 1]), np.array([4, 2, 2, 10, 1]))