We\'ve got a set of forms in our web application that is managed by multiple staff members. The forms are common for all staff members. Right now, we\'ve implemented a locki
As Spence suggested, what you need is optimistic concurrency. A standard website that does no accounting for whether the data has changed uses what I call "last write wins". Simply put, whichever connection saves to the database last, that version of the data is the one that sticks. In optimistic concurrency, you use a "first write wins" logic such that if two connections try to save the same row at the same time, the first one that commits wins and the second is rejected.
There are two pieces to this mechanism:
Two approaches:
The first one entails using something like SQL Server's rowversion data type which is guaranteed to change each time the row changes. The upside is that it makes it simple to roll your own logic to determine if something has changed. When you get the data, you pull the rowversion column's value and when you commit, you compare that value with what is currently in the database. If they are different, the data has changed since you last retrieved it and you should reject the commit otherwise proceed to save the data.
The second one entails comparing the columns you pulled with their existing committed values in the database. As Spence suggested, if you attempt the update and no rows were updated, then clearly one of the criteria failed. This logic can get tricky when some of the values are null. Many object relational mappers and even .NET's DataTable and DataAdapter technology can help you handle this.
If you do not leave it up to the user, then the form would throw some message stating that the data has changed since they last edited and you would simply re-retrieve the data overwriting their changes. As you can imagine, users aren't particularly fond of this solution especially in a high volume system where it might happen frequently.
A more sophisticated (and also more complicated) approach is to show the user what has changed allow them to choose which items to try to re-commit, Behind the scenes you would retrieve the data again, overwrite the values picked by the user with their entries and try to commit again. In high volume system, this will still be problematic because by the time the user has tried to re-commit, the data may have changed yet again.
The checkout concept is effectively pessimistic concurrency where users "lock" rows. As you have discovered, it is difficult to implement in a stateless environment. Users are notorious for simply closing their browser while they have something checked out or using the Back button to return a set that was checked out and try to recommit it. IMO, it is more trouble than it is worth to try go this route in a web-based solution. Assuming you write the user name that last changed a given row, with optimistic concurrency, you can inform the user whose changes are rejected who saved the data before them.