I wrote code to arrange numbers after taking user input. The ordering requires that the sum of adjacent numbers is prime. Up until 10 as an input code is working fine. If I
This answer is based on @Tim Peters' suggestion about Hamiltonian paths.
There are many possible solutions. To avoid excessive memory consumption for intermediate solutions, a random path can be generated. It also allows to utilize multiple CPUs easily (each cpu generates its own paths in parallel).
import multiprocessing as mp
import sys
def main():
number = int(sys.argv[1])
# directed graph, vertices: 1..number (including ends)
# there is an edge between i and j if (i+j) is prime
vertices = range(1, number+1)
G = {} # vertex -> adjacent vertices
is_prime = sieve_of_eratosthenes(2*number+1)
for i in vertices:
G[i] = []
for j in vertices:
if is_prime[i + j]:
G[i].append(j) # there is an edge from i to j in the graph
# utilize multiple cpus
q = mp.Queue()
for _ in range(mp.cpu_count()):
p = mp.Process(target=hamiltonian_random, args=[G, q])
p.daemon = True # do not survive the main process
p.start()
print(q.get())
if __name__=="__main__":
main()
where Sieve of Eratosthenes is:
def sieve_of_eratosthenes(limit):
is_prime = [True]*limit
is_prime[0] = is_prime[1] = False # zero and one are not primes
for n in range(int(limit**.5 + .5)):
if is_prime[n]:
for composite in range(n*n, limit, n):
is_prime[composite] = False
return is_prime
and:
import random
def hamiltonian_random(graph, result_queue):
"""Build random paths until Hamiltonian path is found."""
vertices = list(graph.keys())
while True:
# build random path
path = [random.choice(vertices)] # start with a random vertice
while True: # until path can be extended with a random adjacent vertex
neighbours = graph[path[-1]]
random.shuffle(neighbours)
for adjacent_vertex in neighbours:
if adjacent_vertex not in path:
path.append(adjacent_vertex)
break
else: # can't extend path
break
# check whether it is hamiltonian
if len(path) == len(vertices):
assert set(path) == set(vertices)
result_queue.put(path) # found hamiltonian path
return
$ python order-adjacent-prime-sum.py 20
[19, 18, 13, 10, 1, 4, 9, 14, 5, 6, 17, 2, 15, 16, 7, 12, 11, 8, 3, 20]
The output is a random sequence that satisfies the conditions:
It takes around 10 seconds on average to get result for n = 900 and extrapolating the time as exponential function, it should take around 20 seconds for n = 1000:

The image is generated using this code:
import numpy as np
figname = 'hamiltonian_random_noset-noseq-900-900'
Ns, Ts = np.loadtxt(figname+'.xy', unpack=True)
# use polyfit to fit the data
# y = c*a**n
# log y = log (c * a ** n)
# log Ts = log c + Ns * log a
coeffs = np.polyfit(Ns, np.log2(Ts), deg=1)
poly = np.poly1d(coeffs, variable='Ns')
# use curve_fit to fit the data
from scipy.optimize import curve_fit
def func(x, a, c):
return c*a**x
popt, pcov = curve_fit(func, Ns, Ts)
aa, cc = popt
a, c = 2**coeffs
# plot it
import matplotlib.pyplot as plt
plt.figure()
plt.plot(Ns, np.log2(Ts), 'ko', label='time measurements')
plt.plot(Ns, np.polyval(poly, Ns), 'r-',
label=r'$time = %.2g\times %.4g^N$' % (c, a))
plt.plot(Ns, np.log2(func(Ns, *popt)), 'b-',
label=r'$time = %.2g\times %.4g^N$' % (cc, aa))
plt.xlabel('N')
plt.ylabel('log2(time in seconds)')
plt.legend(loc='upper left')
plt.show()
Fitted values:
>>> c*a**np.array([900, 1000])
array([ 11.37200806, 21.56029156])
>>> func([900, 1000], *popt)
array([ 14.1521409 , 22.62916398])