I am trying to solve a problem using CUDA Thrust.
I have a host array with 3 elements. Is it possible, using Thrust, to create a device array of 3
As an apparently simpler alternative to using CUDA Thrust, I'm posting below a worked example implementing in CUDA the classical Matlab's meshgrid function.
In Matlab
x = [1 2 3];
y = [4 5 6 7];
[X, Y] = meshgrid(x, y);
produces
X =
1 2 3
1 2 3
1 2 3
1 2 3
and
Y =
4 4 4
5 5 5
6 6 6
7 7 7
X is exactly the four-fold replication of the x array, which is the OP's question and first guess of Robert Crovella's answer, while Y is the three-fold consecutive replication of each element of the y array, which is the second guess of Robert Crovella's answer.
Here is the code:
#include
#include
#include "Utilities.cuh"
#define BLOCKSIZE_MESHGRID_X 16
#define BLOCKSIZE_MESHGRID_Y 16
#define DEBUG
/*******************/
/* MESHGRID KERNEL */
/*******************/
template
__global__ void meshgrid_kernel(const T * __restrict__ x, size_t Nx, const float * __restrict__ y, size_t Ny, T * __restrict__ X, T * __restrict__ Y)
{
unsigned int tidx = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int tidy = blockIdx.y * blockDim.y + threadIdx.y;
if ((tidx < Nx) && (tidy < Ny)) {
X[tidy * Nx + tidx] = x[tidx];
Y[tidy * Nx + tidx] = y[tidy];
}
}
/************/
/* MESHGRID */
/************/
template
thrust::pair meshgrid(const T *x, const unsigned int Nx, const T *y, const unsigned int Ny) {
T *X; gpuErrchk(cudaMalloc((void**)&X, Nx * Ny * sizeof(T)));
T *Y; gpuErrchk(cudaMalloc((void**)&Y, Nx * Ny * sizeof(T)));
dim3 BlockSize(BLOCKSIZE_MESHGRID_X, BLOCKSIZE_MESHGRID_Y);
dim3 GridSize (iDivUp(Nx, BLOCKSIZE_MESHGRID_X), iDivUp(BLOCKSIZE_MESHGRID_Y, BLOCKSIZE_MESHGRID_Y));
meshgrid_kernel<<>>(x, Nx, y, Ny, X, Y);
#ifdef DEBUG
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
#endif
return thrust::make_pair(X, Y);
}
/********/
/* MAIN */
/********/
int main()
{
const int Nx = 3;
const int Ny = 4;
float *h_x = (float *)malloc(Nx * sizeof(float));
float *h_y = (float *)malloc(Ny * sizeof(float));
float *h_X = (float *)malloc(Nx * Ny * sizeof(float));
float *h_Y = (float *)malloc(Nx * Ny * sizeof(float));
for (int i = 0; i < Nx; i++) h_x[i] = i;
for (int i = 0; i < Ny; i++) h_y[i] = i + 4.f;
float *d_x; gpuErrchk(cudaMalloc(&d_x, Nx * sizeof(float)));
float *d_y; gpuErrchk(cudaMalloc(&d_y, Ny * sizeof(float)));
gpuErrchk(cudaMemcpy(d_x, h_x, Nx * sizeof(float), cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(d_y, h_y, Ny * sizeof(float), cudaMemcpyHostToDevice));
thrust::pair meshgrid_pointers = meshgrid(d_x, Nx, d_y, Ny);
float *d_X = (float *)meshgrid_pointers.first;
float *d_Y = (float *)meshgrid_pointers.second;
gpuErrchk(cudaMemcpy(h_X, d_X, Nx * Ny * sizeof(float), cudaMemcpyDeviceToHost));
gpuErrchk(cudaMemcpy(h_Y, d_Y, Nx * Ny * sizeof(float), cudaMemcpyDeviceToHost));
for (int j = 0; j < Ny; j++) {
for (int i = 0; i < Nx; i++) {
printf("i = %i; j = %i; x = %f; y = %f\n", i, j, h_X[j * Nx + i], h_Y[j * Nx + i]);
}
}
return 0;
}