What I do:
fit_generator(). This produces evaluation metrics (loss, acc, val_los
Set use_multiprocessing=False at fit_generator level fixes the problem BUT at the cost of slowing down training significantly. A better but still imperfect workround would be to set use_multiprocessing=False for only the validation generator as the code below modified from keras' fit_generator function.
...
try:
if do_validation:
if val_gen and workers > 0:
# Create an Enqueuer that can be reused
val_data = validation_data
if isinstance(val_data, Sequence):
val_enqueuer = OrderedEnqueuer(val_data,
**use_multiprocessing=False**)
validation_steps = len(val_data)
else:
val_enqueuer = GeneratorEnqueuer(val_data,
**use_multiprocessing=False**)
val_enqueuer.start(workers=workers,
max_queue_size=max_queue_size)
val_enqueuer_gen = val_enqueuer.get()
...