How to adjust a data table manipulation so that, besides sum per category of several colums,
it would also calculate other functions at the same time such as <
Consider building a list of data tables where you iterate through every ColChoice and apply each function of FuncChoice (setting names accordingly). Then, to merge all data tables together, run merge in a Reduce call. Also, use get to retrieve environment objects (functions/columns).
Note: ColChoice was renamed for camel case and length function replaces .N for functional form for count:
set.seed(12212018) # RUN BEFORE data.table() BUILD TO REPRODUCE OUTPUT
...
ColChoice <- c("c1", "c4")
FunChoice <- c("length", "mean", "sum")
output <- lapply(ColChoice, function(col)
dt[, setNames(lapply(FunChoice, function(f) get(f)(get(col))),
paste0(col, "_", FunChoice)),
by=category]
)
final_dt <- Reduce(function(x, y) merge(x, y, by="category"), output)
head(final_dt)
# category c1_length c1_mean c1_sum c4_length c4_mean c4_sum
# 1: a 3893 10000.001 38930003 3893 9.990517 38893.08
# 2: b 4021 10000.028 40210113 4021 9.977178 40118.23
# 3: c 3931 10000.008 39310030 3931 9.996538 39296.39
# 4: d 3954 10000.010 39540038 3954 10.004578 39558.10
# 5: e 4016 9999.998 40159992 4016 10.002131 40168.56
# 6: f 3974 9999.987 39739947 3974 9.994220 39717.03