I have a requirement to do the incremental loading to a table by using Spark (PySpark)
Here\'s the example:
Day 1
id | value
-----------
1 |
dataframe appending is done by union
function in pyspark. I'll demo with an example and create 2 dataframes as you mentioned in the question.
from pyspark.sql.types import Row
df1 = sqlContext.createDataFrame([Row(id=1,value="abc"),Row(id=2,value="def")])
df1.show()
+---+-----+
| id|value|
+---+-----+
| 1| abc|
| 2| def|
+---+-----+
df2 = sqlContext.createDataFrame([Row(id=2,value="cde"),Row(id=3,value="xyz")])
df2.show()
+---+-----+
| id|value|
+---+-----+
| 2| cde|
| 3| xyz|
+---+-----+
Lets do a union
between the two dataframes and you will get the desired result.
df2.union(df1).dropDuplicates(["id"]).show()
+---+-----+
| id|value|
+---+-----+
| 1| abc|
| 3| xyz|
| 2| cde|
+---+-----+
You can sort the output using asc
from pyspark.sql.functions
from pyspark.sql.functions import asc
df2.union(df1).dropDuplicates(["id"]).sort(asc("id")).show()
+---+-----+
| id|value|
+---+-----+
| 1| abc|
| 2| cde|
| 3| xyz|
+---+-----+