In Slick\'s documentation examples for using Reactive Streams are presented just for reading data as a means of a DatabasePublisher. But what happens when you want to use yo
Although you can use a Sink.foreach
to achieve this (as mentioned by Ramon) it is safer and likely faster (by running the inserts in parallel) to use the mapAsync
Flow
. The problem you will face with using Sink.foreach
is that it does not have a return value. Inserting into a database via slicks db.run
method returns a Future
which will then escape out of the steams returned Future[Done]
which completes as soon as the Sink.foreach
finishes.
implicit val system = ActorSystem("system")
implicit val materializer = ActorMaterializer()
class Numbers(tag: Tag) extends Table[Int](tag, "NumberTable") {
def value = column[Int]("value")
def * = value
}
val numbers = TableQuery[Numbers]
val db = Database.forConfig("postgres")
Await.result(db.run(numbers.schema.create), Duration.Inf)
val streamFuture: Future[Done] = Source(0 to 100)
.runWith(Sink.foreach[Int] { (i: Int) =>
db.run(numbers += i).foreach(_ => println(s"stream 1 insert $i done"))
})
Await.result(streamFuture, Duration.Inf)
println("stream 1 done")
//// sample 1 output: ////
// stream 1 insert 1 done
// ...
// stream 1 insert 99 done
// stream 1 done <-- stream Future[Done] returned before inserts finished
// stream 1 insert 100 done
On the other hand the def mapAsync[T](parallelism: Int)(f: Out ⇒ Future[T])
Flow
allows you to run the inserts in parallel via the parallelism paramerter and accepts a function from the upstream out value to a future of some type. This matches our i => db.run(numbers += i)
function. The great thing about this Flow
is that it then feeds the result of these Futures
downstream.
val streamFuture2: Future[Done] = Source(0 to 100)
.mapAsync(1) { (i: Int) =>
db.run(numbers += i).map { r => println(s"stream 2 insert $i done"); r }
}
.runWith(Sink.ignore)
Await.result(streamFuture2, Duration.Inf)
println("stream 2 done")
//// sample 2 output: ////
// stream 2 insert 1 done
// ...
// stream 2 insert 100 done
// stream 1 done <-- stream Future[Done] returned after inserts finished
To prove the point you can even return a real result from the stream rather than a Future[Done]
(With Done representing Unit). This stream will also add a higher parallelism value and batching for extra performance. *
val streamFuture3: Future[Int] = Source(0 to 100)
.via(Flow[Int].grouped(10)) // Batch in size 10
.mapAsync(2)((ints: Seq[Int]) => db.run(numbers ++= ints).map(_.getOrElse(0))) // Insert batches in parallel, return insert count
.runWith(Sink.fold(0)(_+_)) // count all inserts and return total
val rowsInserted = Await.result(streamFuture3, Duration.Inf)
println(s"stream 3 done, inserted $rowsInserted rows")
// sample 3 output:
// stream 3 done, inserted 101 rows