I am curious what the fastest way to consume an iterator would be, and the most Pythonic way.
For example, say that I want to create an iterator with the map>
While you shouldn't be creating a map object just for side effects, there is in fact a standard recipe for consuming iterators in the itertools docs:
def consume(iterator, n=None):
"Advance the iterator n-steps ahead. If n is None, consume entirely."
# Use functions that consume iterators at C speed.
if n is None:
# feed the entire iterator into a zero-length deque
collections.deque(iterator, maxlen=0)
else:
# advance to the empty slice starting at position n
next(islice(iterator, n, n), None)
For just the "consume entirely" case, this can be simplified to
def consume(iterator):
collections.deque(iterator, maxlen=0)
Using collections.deque this way avoids storing all the elements (because maxlen=0) and iterates at C speed, without bytecode interpretation overhead. There's even a dedicated fast path in the deque implementation for using a maxlen=0 deque to consume an iterator.
Timing:
In [1]: import collections
In [2]: x = range(1000)
In [3]: %%timeit
...: i = iter(x)
...: for _ in i:
...: pass
...:
16.5 µs ± 829 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
In [4]: %%timeit
...: i = iter(x)
...: collections.deque(i, maxlen=0)
...:
12 µs ± 566 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
Of course, this is all based on CPython. The entire nature of interpreter overhead is very different on other Python implementations, and the maxlen=0 fast path is specific to CPython. See abarnert's answer for other Python implementations.