Using malloc and free, it is easy to allocate structures with extra data beyond the end. But how do I accomplish the same with new/
If I were you, I'd use placement new and an explicit destructor call instead of delete.
template< typename D, typename T >
D *get_aux_storage( T *x ) {
return reinterpret_cast< D * >( x + 1 );
}
int main() {
char const *hamburger_identity = "yum";
void *hamburger_room = malloc( sizeof( Hamburger )
+ strlen( hamburger_identity ) + 1 );
Hamburger *hamburger = new( hamburger_room ) Hamburger;
strcpy( get_aux_storage< char >( hamburger ), hamburger_identity );
cout << get_aux_storage< char const >( hamburger ) << '\n';
hamburger->~Hamburger(); // explicit destructor call
free( hamburger_room );
}
Of course, this kind of optimization should only be done after profiling has proven the need. (Will you really save memory this way? Will this make debugging harder?)
There might not be a significant technical difference, but to me new and delete signal that an object is being created and destroyed, even if the object is just a character. When you allocate an array of characters as a generic "block," it uses the array allocator (specially suited to arrays) and notionally constructs characters in it. Then you must use placement new to construct a new object on top of those characters, which is essentially object aliasing or double construction, followed by double destruction when you want to delete everything.
It's better to sidestep the C++ object model with malloc/free than to twist it to avoid dealing with data as objects.
Oh, an alternative is to use a custom operator new, but it can be a can of worms so I do not recommend it.
struct Hamburger {
int tastyness;
public:
char *GetMeat();
static void *operator new( size_t size_of_bread, size_t size_of_meat )
{ return malloc( size_of_bread + size_of_meat ); }
static void operator delete( void *ptr )
{ free( ptr ); }
};
int main() {
char const *hamburger_identity = "yum";
size_t meat_size = strlen( hamburger_identity ) + 1;
Hamburger *hamburger = new( meat_size ) Hamburger;
strcpy( hamburger->GetMeat(), hamburger_identity );
cout << hamburger->GetMeat() << '\n';
}