Using numpy to efficiently convert 16-bit image data to 8 bit for display, with intensity scaling

前端 未结 5 1983
耶瑟儿~
耶瑟儿~ 2020-12-15 09:55

I frequently convert 16-bit grayscale image data to 8-bit image data for display. It\'s almost always useful to adjust the minimum and maximum display intensity to highlight

5条回答
  •  爱一瞬间的悲伤
    2020-12-15 10:24

    I know this is an old tread, but we now have cupy with gpu acceleration. With cupy is always faster (both methods from Jaime great comment run at closer speed) with cupy.

    import numpy as np
    import cupy as cp
    import timeit
    rows, cols = 768, 1024
    image = np.random.randint(100, 14000,
                                 size=(1, rows, cols)).astype(np.uint16)
    display_min = 1000
    display_max = 10000
    
    def display(image, display_min, display_max): # copied from Bi Rico
        # Here I set copy=True in order to ensure the original image is not
        # modified. If you don't mind modifying the original image, you can
        # set copy=False or skip this step.
        image = np.array(image, copy=True)
        image.clip(display_min, display_max, out=image)
        image -= display_min
        np.floor_divide(image, (display_max - display_min + 1) / 256,
                        out=image, casting='unsafe')
        return image.astype(np.uint8)
    
    def lut_display(image, display_min, display_max) :
        lut = np.arange(2**16, dtype='uint16')
        lut = display(lut, display_min, display_max)
        return np.take(lut, image)
    
    
    def displaycp(image2, display_min, display_max): # copied from Bi Rico
        # Here I set copy=True in order to ensure the original image is not
        # modified. If you don't mind modifying the original image, you can
        # set copy=False or skip this step.
        image2 = cp.array(image2, copy=True)
        image2.clip(display_min, display_max, out=image2)
        image2 -= display_min
        cp.floor_divide(image2, (display_max - display_min + 1) / 256,
                        out=image2, casting='unsafe')
        return image2.astype(cp.uint8)
    
    def lut_displaycp(image2, display_min, display_max) :
        lut = cp.arange(2**16, dtype='uint16')
        lut = displaycp(lut, display_min, display_max)
        return cp.take(lut, image2)
    
    np.all(display(image, display_min, display_max) ==
               lut_display(image, display_min, display_max))
    
    imagecp = cp.asarray(image)
    type(imagecp)
    
    cp.all(displaycp(imagecp, display_min, display_max) ==
               lut_displaycp(imagecp, display_min, display_max))
    
    np.all(cp.asnumpy(displaycp(imagecp, display_min, display_max)) ==
              display(image, display_min, display_max))
    

    Timings

    timeit.timeit('display(image, display_min, display_max)',
                      'from __main__ import display, image, display_min, display_max',
                       number=100)
    

    1.2715457340000285

    timeit.timeit('lut_display(image, display_min, display_max)',
                      'from __main__ import lut_display, image, display_min, display_max',
                      number=100)
    

    0.27357000399933895

    timeit.timeit('displaycp(imagecp, display_min, display_max)',
                      'from __main__ import displaycp, imagecp, display_min, display_max',
                       number=100)
    

    0.018452465999871492

    timeit.timeit('lut_displaycp(imagecp, display_min, display_max)',
                      'from __main__ import lut_displaycp, imagecp, display_min, display_max',
                      number=100)
    

    0.015030614999886893

提交回复
热议问题