My data is in a data.frame format like this sample data:
data <-
structure(list(Article = structure(c(1L, 1L, 3L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L
Since dplyr
is under active development, I thought I would post an update that also incorporates tidyr
:
library(dplyr)
library(tidyr)
data %>%
expand(Article, Week) %>%
left_join(data) %>%
group_by(Article, Week) %>%
summarise(WeekDemand = sum(Demand, na.rm=TRUE))
Which produces:
Article Week WeekDemand
1 10004 2013-W01 1215
2 10004 2013-W02 900
3 10004 2013-W03 774
4 10004 2013-W04 1170
5 10006 2013-W01 0
6 10006 2013-W02 0
7 10006 2013-W03 0
8 10006 2013-W04 5
9 10007 2013-W01 2
10 10007 2013-W02 0
11 10007 2013-W03 0
12 10007 2013-W04 0
Using tidyr >= 0.3.1 this can now be written as:
data %>%
complete(Article, Week) %>%
group_by(Article, Week) %>%
summarise(Demand = sum(Demand, na.rm = TRUE))