I have an image I load with:
im = cv2.imread(filename)
I want to keep data that is in the center of the image. I created a circle as a mas
In this case if you want to have a circular image you must write a new algorithm and first you must be able to access to the coordinates of the pixels. Then you can simply compare pixels that are not within the scope of that circle or not and replace them with some value (or NULL if it's accepted with your image format criteria).
Here is an example:
import cv2
import numpy as np
im = cv2.imread('sss.png')
def facechop(im):
height,width,depth = im.shape
#circle = np.zeros((height,width))
#print circle
x=width/2
y=height/2
circle=cv2.circle(im,(width/2,height/2),180,1,thickness=1)
#newcameramtx, roi=cv2.getOptimalNewCameraMatrix(im,10,(w,h),1,(w,h))
cv2.rectangle(im,(x-180,y-180),(x+180,y+180),(0,0,255),2)
crop_img = im[y-180:y+180,x-180:x+180]
lastim=np.equal(crop_img,circle)
#dd=np.logical_and(crop_img,circle)
for i in range(len(last_im)) :
if last_im[i].all()==False:
crop_img[i]=[0,0,0]
cv2.imshow('im',crop_img)
if __name__ == '__main__':
facechop(im)
while(True):
key = cv2.waitKey(20)
if key in [27, ord('Q'), ord('q')]:
break