I\'m writing a dynamically-typed language. Currently, my objects are represented in this way:
struct Class { struct Class* class; struct Object* (*get)(stru
There are 3 major approaches for implementing dynamic types and which one is best depends on the situation.
1) C-style inheritance: The first one is shown in Josh Haberman's answer. We create a type-hierarchy using classic C-style inheritance:
struct Object { struct Class* class; };
struct Integer { struct Object object; int value; };
struct String { struct Object object; size_t length; char* characters; };
Functions with dynamically typed arguments receive them as Object*, inspect the class member, and cast as appropriate. The cost to check the type is two pointer hops. The cost to get the underlying value is one pointer hop. In approaches like this one, objects are typically allocated on the heap since the size of objects is unknown at compile time. Since most `malloc implementations allocate a minimum of 32 bytes at a time, small objects can waste a significant amount of memory with this approach.
2) Tagged union: We can remove a level of indirection for accessing small objects using the "short string optimization"/"small object optimization":
struct Object {
struct Class* class;
union {
// fundamental C types or other small types of interest
bool as_bool;
int as_int;
// [...]
// object pointer for large types (or actual pointer values)
void* as_ptr;
};
};
Functions with dynamically typed arguments receive them as Object, inspect the class member, and read the union as appropriate. The cost to check the type is one pointer hop. If the type is one of the special small types, it is stored directly in the union, and there is no indirection to retrieve the value. Otherwise, one pointer hop is required to retrieve the value. This approach can sometimes avoid allocating objects on the heap. Although the exact size of an object still isn't known at compile time, we now know the size and alignment (our union) needed to accommodate small objects.
In these first two solutions, if we know all the possible types at compile time, we can encode the type using an integer type instead of a pointer and reduce type check indirection by one pointer hop.
3) Nan-boxing: Finally, there's nan-boxing where every object handle is only 64 bits.
double object;
Any value corresponding to a non-NaN double is understood to simply be a double. All other object handles are a NaN. There are actually large swaths of bit values of double precision floats that correspond to NaN in the commonly used IEEE-754 floating point standard. In the space of NaNs, we use a few bits to tag types and the remaining bits for data. By taking advantage of the fact that most 64-bit machines actually only have a 48-bit address space, we can even stash pointers in NaNs. This method incurs no indirection or extra memory use but constrains our small object types, is awkward, and in theory is not portable C.