Java memory visibility documentation says that:
A write to a volatile field happens-before every subsequent read of that same field.
I'm confused what does subsequent means in context of multithreading. Does this sentence implies some global clock for all processors and cores...?
Subsequent means (according to the dictionary) coming after in time. There certainly is a global clock across all CPUs in a computer (think X Ghz) and the document is trying to say that if thread-1 did something at clock tick 1 then thread-2 does something on another CPU at clock tick 2, it's actions are considered subsequent.
A write to a volatile field happens-before every subsequent read of that same field.
The key phrase that could be added to this sentence to make it more clear is "in another thread". It might make more sense to understand it as:
A write to a volatile field happens-before every subsequent read of that same field in another thread.
What this is saying that if a read of a volatile field happens in Thread-2 after (in time) the write in Thread-1, then Thread-2 will be guaranteed to see the updated value. Further up in the documentation you point to is the section (emphasis mine):
... The results of a write by one thread are guaranteed to be visible to a read by another thread only if the write operation happens-before the read operation. The synchronized and volatile constructs, as well as the Thread.start() and Thread.join() methods, can form happens-before relationships. In particular.
Notice the highlighted phrase. The Java compiler is free to reorder instructions in any one thread's execution for optimization purposes as long as the reordering doesn't violate the definition of the language – this is called execution order and is critically different than program order.
Let's look at the following example with variables a and b that are non-volatile ints initialized to 0 with no synchronized clauses. What is shown is program order and the time in which the threads are encountering the lines of code.
Time Thread-1 Thread-2
1 a = 1;
2 b = 2;
3 x = a;
4 y = b;
5 c = a + b; z = x + y;
If Thread-1 adds a + b at Time 5, it is guaranteed to be 3. However, if Thread-2 adds x + y at Time 5, it might get 0, 1, 2, or 3 depends on race conditions. Why? Because the compiler might have reordered the instructions in Thread-1 to set a after b because of efficiency reasons. Also, Thread-1 may not have appropriately published the values of a and b so that Thread-2 might get out of date values. Even if Thread-1 gets context-switched out or crosses a write memory barrier and a and b are published, Thread-2 needs to cross a read barrier to update any cached values of a and b.
If a and b were marked as volatile then the write to a must happen-before (in terms of visibility guarantees) the subsequent read of a on line 3 and the write to b must happen-before the subsequent read of b on line 4. Both threads would get 3.
We use volatile and synchronized keywords in java to ensure happens-before guarantees. A write memory barrier is crossed when assigning a volatile or exiting a synchronized block and a read barrier is crossed when reading a volatile or entering a synchronized block. The Java compiler cannot reorder write instructions past these memory barriers so the order of updates is assured. These keywords control instruction reordering and insure proper memory synchronization.
NOTE: volatile is unnecessary in a single-threaded application because program order assures the reads and writes will be consistent. A single-threaded application might see any value of (non-volatile) a and b at times 3 and 4 but it always sees 3 at Time 5 because of language guarantees. So although use of volatile changes the reordering behavior in a single-threaded application, it is only required when you share data between threads.