I\'m using a data frame similar to this one:
df<-data.frame(student=c(rep(1,5),rep(2,5)), month=c(1:5,1:5),
quiz1p1=seq(20,20.9,0.1),quiz1p2=seq(3
There was a very similar question asked about half a year ago, in which I wrote the following function:
melt.wide = function(data, id.vars, new.names) {
require(reshape2)
require(stringr)
data.melt = melt(data, id.vars=id.vars)
new.vars = data.frame(do.call(
rbind, str_extract_all(data.melt$variable, "[0-9]+")))
names(new.vars) = new.names
cbind(data.melt, new.vars)
}
You can use the function to "melt" your data as follows:
dfL <-melt.wide(df, id.vars=1:2, new.names=c("Quiz", "Part"))
head(dfL)
# student month variable value Quiz Part
# 1 1 1 quiz1p1 20.0 1 1
# 2 1 2 quiz1p1 20.1 1 1
# 3 1 3 quiz1p1 20.2 1 1
# 4 1 4 quiz1p1 20.3 1 1
# 5 1 5 quiz1p1 20.4 1 1
# 6 2 1 quiz1p1 20.5 1 1
tail(dfL)
# student month variable value Quiz Part
# 35 1 5 quiz2p2 90.4 2 2
# 36 2 1 quiz2p2 90.5 2 2
# 37 2 2 quiz2p2 90.6 2 2
# 38 2 3 quiz2p2 90.7 2 2
# 39 2 4 quiz2p2 90.8 2 2
# 40 2 5 quiz2p2 90.9 2 2
Once the data are in this form, you can much more easily use dcast() to get whatever form you desire. For example
head(dcast(dfL, student + month + Quiz ~ Part))
# student month Quiz 1 2
# 1 1 1 1 20.0 30.0
# 2 1 1 2 80.0 90.0
# 3 1 2 1 20.1 30.1
# 4 1 2 2 80.1 90.1
# 5 1 3 1 20.2 30.2
# 6 1 3 2 80.2 90.2