Does anyone have a detailed explanation on how integers can be exploited? I have been reading a lot about the concept, and I understand what an it is, and I understand buffe
I used APL/370 in the late 60s on an IBM 360/40. APL is language in which essentially everything thing is a multidimensional array, and there are amazing operators for manipulating arrays, including reshaping from N dimensions to M dimensions, etc.
Unsurprisingly, an array of N dimensions had index bounds of 1..k with a different positive k for each axis.. and k was legally always less than 2^31 (positive values in a 32 bit signed machine word). Now, an array of N dimensions has an location assigned in memory. Attempts to access an array slot using an index too large for an axis is checked against the array upper bound by APL. And of course this applied for an array of N dimensions where N == 1.
APL didn't check if you did something incredibly stupid with RHO (array reshape) operator. APL only allowed a maximum of 64 dimensions. So, you could make an array of 1-64 dimension, and APL would do it if the array dimensions were all less than 2^31. Or, you could try to make an array of 65 dimensions. In this case, APL goofed, and surprisingly gave back a 64 dimension array, but failed to check the axis sizes. (This is in effect where the "integer overflow occurred"). This meant you could create an array with axis sizes of 2^31 or more... but being interpreted as signed integers, they were treated as negative numbers.
The right RHO operator incantation applied to such an array to could reduce the dimensionaly to 1, with an an upper bound of, get this, "-1". Call this matrix a "wormhole" (you'll see why in moment). Such an wormhole array has a place in memory, just like any other array. But all array accesses are checked against the upper bound... but the array bound check turned out to be done by an unsigned compare by APL. So, you can access WORMHOLE[1], WORMHOLE[2], ... WORMHOLE[2^32-2] without objection. In effect, you can access the entire machine's memory.
APL also had an array assignment operation, in which you could fill an array with a value. WORMHOLE[]<-0 thus zeroed all of memory.
I only did this once, as it erased the memory containing my APL workspace, the APL interpreter, and obvious the critical part of APL that enabled timesharing (in those days it wasn't protected from users)... the terminal room went from its normal state of mechanically very noisy (we had 2741 Selectric APL terminals) to dead silent in about 2 seconds. Through the glass into the computer room I could see the operator look up startled at the lights on the 370 as they all went out. Lots of runnning around ensued.
While it was funny at the time, I kept my mouth shut.
With some care, one could obviously have tampered with the OS in arbitrary ways.