Hopefully I\'m reading this wrong but in the XGBoost library documentation, there is note of extracting the feature importance attributes using feature_importances_
As the comments indicate, I suspect your issue is a versioning one. However if you do not want to/can't update, then the following function should work for you.
def get_xgb_imp(xgb, feat_names):
from numpy import array
imp_vals = xgb.booster().get_fscore()
imp_dict = {feat_names[i]:float(imp_vals.get('f'+str(i),0.)) for i in range(len(feat_names))}
total = array(imp_dict.values()).sum()
return {k:v/total for k,v in imp_dict.items()}
>>> import numpy as np
>>> from xgboost import XGBClassifier
>>>
>>> feat_names = ['var1','var2','var3','var4','var5']
>>> np.random.seed(1)
>>> X = np.random.rand(100,5)
>>> y = np.random.rand(100).round()
>>> xgb = XGBClassifier(n_estimators=10)
>>> xgb = xgb.fit(X,y)
>>>
>>> get_xgb_imp(xgb,feat_names)
{'var5': 0.0, 'var4': 0.20408163265306123, 'var1': 0.34693877551020408, 'var3': 0.22448979591836735, 'var2': 0.22448979591836735}