I want to calculate the average of a set of angles, which represents source bearing (0 to 360 deg) - (similar to wind-direction)
I know it has been
This is incorrect on every level.
Vectors add according to the rules of vector addition. The "intuitive, expected" answer might not be that intuitive.
Take the following example. If I have one unit vector (1, 0), with origin at (0,0) that points in the +x-direction and another (-1, 0) that also has its origin at (0,0) that points in the -x-direction, what should the "average" angle be?
If I simply add the angles and divide by two, I can argue that the "average" is either +90 or -90. Which one do you think it should be?
If I add the vectors according to the rules of vector addition (component by component), I get the following:
(1, 0) + (-1, 0) = (0, 0)
In polar coordinates, that's a vector with zero magnitude and angle zero.
So what should the "average" angle be? I've got three different answers here for a simple case.
I think the answer is that vectors don't obey the same intuition that numbers do, because they have both magnitude and direction. Maybe you should describe what problem you're solving a bit better.
Whatever solution you decide on, I'd advise you to base it on vectors. It'll always be correct that way.