When should one use LinearSVC or SVC?

前端 未结 2 1858
花落未央
花落未央 2020-12-14 07:38

From my research, I found three conflicting results:

  1. SVC(kernel=\"linear\") is better
  2. LinearSVC is better
  3. Doesn\'t matter

Can

2条回答
  •  离开以前
    2020-12-14 08:15

    Mathematically, optimizing an SVM is a convex optimization problem, usually with a unique minimizer. This means that there is only one solution to this mathematical optimization problem.

    The differences in results come from several aspects: SVC and LinearSVC are supposed to optimize the same problem, but in fact all liblinear estimators penalize the intercept, whereas libsvm ones don't (IIRC). This leads to a different mathematical optimization problem and thus different results. There may also be other subtle differences such as scaling and default loss function (edit: make sure you set loss='hinge' in LinearSVC). Next, in multiclass classification, liblinear does one-vs-rest by default whereas libsvm does one-vs-one.

    SGDClassifier(loss='hinge') is different from the other two in the sense that it uses stochastic gradient descent and not exact gradient descent and may not converge to the same solution. However the obtained solution may generalize better.

    Between SVC and LinearSVC, one important decision criterion is that LinearSVC tends to be faster to converge the larger the number of samples is. This is due to the fact that the linear kernel is a special case, which is optimized for in Liblinear, but not in Libsvm.

提交回复
热议问题