I\'m trying to implement a class that will generate all possible unordered n-tuples or combinations given a number of elements and the size of the combination.
In ot
Personally I would go with a simple iterative solution.
Represent you set of nodes as a set of bits. If you need 5 nodes then have 5 bits, each bit representing a specific node. If you want 3 of these in your tupple then you just need to set 3 of the bits and track their location.
Basically this is a simple variation on fonding all different subsets of nodes combinations. Where the classic implementation is represent the set of nodes as an integer. Each bit in the integer represents a node. The empty set is then 0. Then you just increment the integer each new value is a new set of nodes (the bit pattern representing the set of nodes). Just in this variation you make sure that there are always 3 nodes on.
Just to help me think I start with the 3 top nodes active { 4, 3, 2 }. Then I count down. But it would be trivial to modify this to count in the other direction.
#include
#include
class TuppleSet
{
friend std::ostream& operator<<(std::ostream& stream, TuppleSet const& data);
boost::dynamic_bitset<> data; // represents all the different nodes
std::vector bitpos; // tracks the 'n' active nodes in the tupple
public:
TuppleSet(int nodes, int activeNodes)
: data(nodes)
, bitpos(activeNodes)
{
// Set up the active nodes as the top 'activeNodes' node positions.
for(int loop = 0;loop < activeNodes;++loop)
{
bitpos[loop] = nodes-1-loop;
data[bitpos[loop]] = 1;
}
}
bool next()
{
// Move to the next combination
int bottom = shiftBits(bitpos.size()-1, 0);
// If it worked return true (otherwise false)
return bottom >= 0;
}
private:
// index is the bit we are moving. (index into bitpos)
// clearance is the number of bits below it we need to compensate for.
//
// [ 0, 1, 1, 1, 0 ] => { 3, 2, 1 }
// ^
// The bottom bit is move down 1 (index => 2, clearance => 0)
// [ 0, 1, 1, 0, 1] => { 3, 2, 0 }
// ^
// The bottom bit is moved down 1 (index => 2, clearance => 0)
// This falls of the end
// ^
// So we move the next bit down one (index => 1, clearance => 1)
// [ 0, 1, 0, 1, 1]
// ^
// The bottom bit is moved down 1 (index => 2, clearance => 0)
// This falls of the end
// ^
// So we move the next bit down one (index =>1, clearance => 1)
// This does not have enough clearance to move down (as the bottom bit would fall off)
// ^ So we move the next bit down one (index => 0, clearance => 2)
// [ 0, 0, 1, 1, 1]
int shiftBits(int index, int clerance)
{
if (index == -1)
{ return -1;
}
if (bitpos[index] > clerance)
{
--bitpos[index];
}
else
{
int nextBit = shiftBits(index-1, clerance+1);
bitpos[index] = nextBit-1;
}
return bitpos[index];
}
};
std::ostream& operator<<(std::ostream& stream, TuppleSet const& data)
{
stream << "{ ";
std::vector::const_iterator loop = data.bitpos.begin();
if (loop != data.bitpos.end())
{
stream << *loop;
++loop;
for(; loop != data.bitpos.end(); ++loop)
{
stream << ", " << *loop;
}
}
stream << " }";
return stream;
}
Main is trivial:
int main()
{
TuppleSet s(5,3);
do
{
std::cout << s << "\n";
}
while(s.next());
}
Output is:
{ 4, 3, 2 }
{ 4, 3, 1 }
{ 4, 3, 0 }
{ 4, 2, 1 }
{ 4, 2, 0 }
{ 4, 1, 0 }
{ 3, 2, 1 }
{ 3, 2, 0 }
{ 3, 1, 0 }
{ 2, 1, 0 }
int shiftBits()
{
int bottom = -1;
for(int loop = 0;loop < bitpos.size();++loop)
{
int index = bitpos.size() - 1 - loop;
if (bitpos[index] > loop)
{
bottom = --bitpos[index];
for(int shuffle = loop-1; shuffle >= 0; --shuffle)
{
int index = bitpos.size() - 1 - shuffle;
bottom = bitpos[index] = bitpos[index-1] - 1;
}
break;
}
}
return bottom;
}