How to generate a distribution with a given mean, variance, skew and kurtosis in Python?

前端 未结 2 599
梦谈多话
梦谈多话 2020-12-14 04:16

random.gauss(mu, sigma)

Above is a function allowing to randomly draw a number from a normal distribution with a given mean and variance

2条回答
  •  不思量自难忘°
    2020-12-14 04:57

    How about using scipy? You can pick the distribution you want from continuous distributions in the scipy.stats library.

    The generalized gamma function has non-zero skew and kurtosis, but you'll have a little work to do to figure out what parameters to use to specify the distribution to get a particular mean, variance, skew and kurtosis. Here's some code to get you started.

    import scipy.stats
    import matplotlib.pyplot as plt
    distribution = scipy.stats.norm(loc=100,scale=5)
    sample = distribution.rvs(size=10000)
    plt.hist(sample)
    plt.show()
    print distribution.stats('mvsk')
    

    This displays a histogram of a 10,000 element sample from a normal distribution with mean 100 and variance 25, and prints the distribution's statistics:

    (array(100.0), array(25.0), array(0.0), array(0.0))

    Replacing the normal distribution with the generalized gamma distribution,

    distribution = scipy.stats.gengamma(100, 70, loc=50, scale=10)
    

    you get the statistics [mean, variance, skew, kurtosis] (array(60.67925117494595), array(0.00023388203873597746), array(-0.09588807605341435), array(-0.028177799805207737)).

提交回复
热议问题