Most dominant color in RGB image - OpenCV / NumPy / Python

后端 未结 3 1392
广开言路
广开言路 2020-12-14 04:05

I have a python image processing function, that uses tries to get the dominant color of an image. I make use of a function I found here https://github.com/tarikd/python-kmea

3条回答
  •  误落风尘
    2020-12-14 04:25

    Two approaches using np.unique and np.bincount to get the most dominant color could be suggested. Also, in the linked page, it talks about bincount as a faster alternative, so that could be the way to go.

    Approach #1

    def unique_count_app(a):
        colors, count = np.unique(a.reshape(-1,a.shape[-1]), axis=0, return_counts=True)
        return colors[count.argmax()]
    

    Approach #2

    def bincount_app(a):
        a2D = a.reshape(-1,a.shape[-1])
        col_range = (256, 256, 256) # generically : a2D.max(0)+1
        a1D = np.ravel_multi_index(a2D.T, col_range)
        return np.unravel_index(np.bincount(a1D).argmax(), col_range)
    

    Verification and timings on 1000 x 1000 color image in a dense range [0,9) for reproducible results -

    In [28]: np.random.seed(0)
        ...: a = np.random.randint(0,9,(1000,1000,3))
        ...: 
        ...: print unique_count_app(a)
        ...: print bincount_app(a)
    [4 7 2]
    (4, 7, 2)
    
    In [29]: %timeit unique_count_app(a)
    1 loop, best of 3: 820 ms per loop
    
    In [30]: %timeit bincount_app(a)
    100 loops, best of 3: 11.7 ms per loop
    

    Further boost

    Further boost upon leveraging multi-core with numexpr module for large data -

    import numexpr as ne
    
    def bincount_numexpr_app(a):
        a2D = a.reshape(-1,a.shape[-1])
        col_range = (256, 256, 256) # generically : a2D.max(0)+1
        eval_params = {'a0':a2D[:,0],'a1':a2D[:,1],'a2':a2D[:,2],
                       's0':col_range[0],'s1':col_range[1]}
        a1D = ne.evaluate('a0*s0*s1+a1*s0+a2',eval_params)
        return np.unravel_index(np.bincount(a1D).argmax(), col_range)
    

    Timings -

    In [90]: np.random.seed(0)
        ...: a = np.random.randint(0,9,(1000,1000,3))
    
    In [91]: %timeit unique_count_app(a)
        ...: %timeit bincount_app(a)
        ...: %timeit bincount_numexpr_app(a)
    1 loop, best of 3: 843 ms per loop
    100 loops, best of 3: 12 ms per loop
    100 loops, best of 3: 8.94 ms per loop
    

提交回复
热议问题