I have a python image processing function, that uses tries to get the dominant color of an image. I make use of a function I found here https://github.com/tarikd/python-kmea
Two approaches using np.unique and np.bincount to get the most dominant color could be suggested. Also, in the linked page, it talks about bincount as a faster alternative, so that could be the way to go.
Approach #1
def unique_count_app(a):
colors, count = np.unique(a.reshape(-1,a.shape[-1]), axis=0, return_counts=True)
return colors[count.argmax()]
Approach #2
def bincount_app(a):
a2D = a.reshape(-1,a.shape[-1])
col_range = (256, 256, 256) # generically : a2D.max(0)+1
a1D = np.ravel_multi_index(a2D.T, col_range)
return np.unravel_index(np.bincount(a1D).argmax(), col_range)
Verification and timings on 1000 x 1000 color image in a dense range [0,9) for reproducible results -
In [28]: np.random.seed(0)
...: a = np.random.randint(0,9,(1000,1000,3))
...:
...: print unique_count_app(a)
...: print bincount_app(a)
[4 7 2]
(4, 7, 2)
In [29]: %timeit unique_count_app(a)
1 loop, best of 3: 820 ms per loop
In [30]: %timeit bincount_app(a)
100 loops, best of 3: 11.7 ms per loop
Further boost
Further boost upon leveraging multi-core with numexpr module for large data -
import numexpr as ne
def bincount_numexpr_app(a):
a2D = a.reshape(-1,a.shape[-1])
col_range = (256, 256, 256) # generically : a2D.max(0)+1
eval_params = {'a0':a2D[:,0],'a1':a2D[:,1],'a2':a2D[:,2],
's0':col_range[0],'s1':col_range[1]}
a1D = ne.evaluate('a0*s0*s1+a1*s0+a2',eval_params)
return np.unravel_index(np.bincount(a1D).argmax(), col_range)
Timings -
In [90]: np.random.seed(0)
...: a = np.random.randint(0,9,(1000,1000,3))
In [91]: %timeit unique_count_app(a)
...: %timeit bincount_app(a)
...: %timeit bincount_numexpr_app(a)
1 loop, best of 3: 843 ms per loop
100 loops, best of 3: 12 ms per loop
100 loops, best of 3: 8.94 ms per loop