I have found the mahalanobis.dist function in package StatMatch (http://cran.r-project.org/web/packages/StatMatch/StatMatch.pdf) but it isn\'t doing exactly what I want. It
I've been trying this out from the same website that you looked at and then stumbled upon this question. I managed to get the script to work, But I get a different result.
#WORKING EXAMPLE
#MAHALANOBIS DIST OF TWO MATRICES
#define matrix
mat1<-matrix(data=c(2,2,6,7,4,6,5,4,2,1,2,5,5,3,7,4,3,6,5,3),nrow=10)
mat2<-matrix(data=c(6,7,8,5,5,5,4,7,6,4),nrow=5)
#center data
mat1.1<-scale(mat1,center=T,scale=F)
mat2.1<-scale(mat2,center=T,scale=F)
#cov matrix
mat1.2<-cov(mat1.1,method="pearson")
mat2.2<-cov(mat2.1,method="pearson")
n1<-nrow(mat1)
n2<-nrow(mat2)
n3<-n1+n2
#pooled matrix
mat3<-((n1/n3)*mat1.2) + ((n2/n3)*mat2.2)
#inverse pooled matrix
mat4<-solve(mat3)
#mean diff
mat5<-as.matrix((colMeans(mat1)-colMeans(mat2)))
#multiply
mat6<-t(mat5) %*% mat4
#multiply
sqrt(mat6 %*% mat5)
I think the function mahalanobis() is used to compute mahalanobis distances between individuals (rows) in one matrix. The function pairwise.mahalanobis() from package(HDMD) can compare two or more matrices and give mahalanobis distances between the matrices.