I have a 3D array that I need to interpolate over one axis (the last dimension). Let\'s say y.shape = (nx, ny, nz)
, I want to interpolate in nz
for
Building on @pv.'s answer, and vectorising the inner loop, the following gives a substantial speedup (EDIT: changed the expensive numpy.tile
to using numpy.lib.stride_tricks.as_strided
):
import numpy
from scipy import interpolate
nx = 30
ny = 40
nz = 50
y = numpy.random.randn(nx, ny, nz)
x = numpy.float64(numpy.arange(0, nz))
# We select some locations in the range [0.1, nz-0.1]
new_z = numpy.random.random_integers(1, (nz-1)*10, size=(nx, ny))/10.0
# y is a 3D ndarray
# x is a 1D ndarray with the abcissa values
# new_z is a 2D array
def original_interpolation():
result = numpy.empty(y.shape[:-1])
for i in range(nx):
for j in range(ny):
f = interpolate.interp1d(x, y[i, j], axis=-1, kind='linear')
result[i, j] = f(new_z[i, j])
return result
grid_x, grid_y = numpy.mgrid[0:nx, 0:ny]
def faster_interpolation():
flat_new_z = new_z.ravel()
k = numpy.searchsorted(x, flat_new_z)
k = k.reshape(nx, ny)
lower_index = [grid_x, grid_y, k-1]
upper_index = [grid_x, grid_y, k]
tiled_x = numpy.lib.stride_tricks.as_strided(x, shape=(nx, ny, nz),
strides=(0, 0, x.itemsize))
z_upper = tiled_x[upper_index]
z_lower = tiled_x[lower_index]
z_step = z_upper - z_lower
z_delta = new_z - z_lower
y_lower = y[lower_index]
result = y_lower + z_delta * (y[upper_index] - y_lower)/z_step
return result
# both should be the same (giving a small difference)
print numpy.max(
numpy.abs(original_interpolation() - faster_interpolation()))
That gives the following times on my machine:
In [8]: timeit foo.original_interpolation()
10 loops, best of 3: 102 ms per loop
In [9]: timeit foo.faster_interpolation()
1000 loops, best of 3: 564 us per loop
Going to nx = 300
, ny = 300
and nz = 500
, gives a 130x speedup:
In [2]: timeit original_interpolation()
1 loops, best of 3: 8.27 s per loop
In [3]: timeit faster_interpolation()
10 loops, best of 3: 60.1 ms per loop
You'd need a write your own algorithm for cubic interpolation, but it shouldn't be so hard.