I\'d like to detect my hand from a live video stream and create a mask of my hand. However I\'m reaching quite a poor result, as you can see from the picture.
My goa
A simple and powerful option is histogram backprojection. For example, create a 2D histogram using H and S (from HSV color space) or a* and b* (from La*b* color space), using pixels from different training images of your hand. Then use [cv2.calcBackProject][1] to classify the pixels in your stream. It's very fast and you should get 25 to 30 fps easily, I guess. Note this is a way to learn the color distribution of your object of interest. The same method can be used in other situations.