I\'ve created an Oracle Text index like the following:
create index my_idx on my_table (text) indextype is ctxsys.context;
And I can then
Oracle Text
1 - You can improve performance by creating the CONTEXT index with FILTER BY:
create index my_idx on my_table(text) indextype is ctxsys.context filter by group_id;
In my tests the filter by definitely improved the performance, but it was still slightly faster to just use a btree index on group_id.
2 - CTXCAT indexes use "sub-indexes", and seem to work similar to a multi-column index. This seems to be the option (4) you're looking for:
begin
ctx_ddl.create_index_set('my_table_index_set');
ctx_ddl.add_index('my_table_index_set', 'group_id');
end;
/
create index my_idx2 on my_table(text) indextype is ctxsys.ctxcat
parameters('index set my_table_index_set');
select * from my_table where catsearch(text, 'blah', 'group_id = 43') > 0
This is likely the fastest approach. Using the above query against 120MB of random text similar to your A and B scenario required only 18 consistent gets. But on the downside, creating the CTXCAT index took almost 11 minutes and used 1.8GB of space.
(Note: Oracle Text seems to work correctly here, but I'm not familiar with Text and I can't gaurentee this isn't an inappropriate use of these indexes like @NullUserException said.)
Multi-column indexes vs. index joins
For the situation you describe in your edit, normally there would not be a significant difference between using an index on (A,B) and joining separate indexes on A and B. I built some tests with data similar to what you described and an index join required only 7 consistent gets versus 2 consistent gets for the multi-column index.
The reason for this is because Oracle retrieves data in blocks. A block is usually 8K, and an index block is already sorted, so you can probably fit the 500 to 2000 values in a few blocks. If you're worried about performance, usually the IO to read and write blocks is the only thing that matters. Whether or not Oracle has to join together a few thousand rows is an inconsequential amount of CPU time.
However, this doesn't apply to Oracle Text indexes. You can join a CONTEXT index with a btree index (a "bitmap and"?), but the performance is poor.