I\'ve read a few instances in reading mathematics and computer science that use the equivalence symbol ≡, (basically an \'=\' with three lines)
The difference resides above all in the level at which the two concepts are introduced. '≡' is a symbol of formal logic where, given two propositions a and b, a ≡ b means (a => b AND b => a).
'=' is instead the typical example of an equivalence relation on a set, and presumes at least a theory of sets. When one defines a particular set, usually he provides it with a suitable notion of equality, which comes in the form of an equivalence relation and uses the symbol '='. For example, when you define the set Q of the rational numbers, you define equality a/b = c/d (where a/b and c/d are rational) if and only if ad = bc (where ad and bc are integers, the notion of equality for integers having already been defined elsewhere).
Sometimes you will find the informal notation f(x) ≡ g(x), where f and g are functions: It means that f and g have the same domain and that f(x) = g(x) for each x in such domain (this is again an equivalence relation). Finally, sometimes you find ≡ (or ~) as a generic symbol to denote an equivalence relation.