AI of spaceship's propulsion: land a 3D ship at position=0 and angle=0

前端 未结 4 1541
失恋的感觉
失恋的感觉 2020-12-13 04:03

This is a very difficult problem about how to maneuver a spaceship that can both translate and rotate in 3D, for a space game.

The spaceship has n jets

4条回答
  •  情话喂你
    2020-12-13 04:41

    This is not an answer, but it's too long to place as a comment.

    First of all, a real solution will involve both linear programming (for multivariate optimization with constraints that will be used in many of the substeps) as well as techniques used in trajectory optimization and/or control theory. This is a very complex problem and if you can solve it, you could have a job at any company of your choosing. The only thing that could make this problem worse would be friction (drag) effects or external body gravitation effects. A real solution would also ideally use Verlet integration or 4th order Runge Kutta, which offer improvements over the Euler integration you've implemented here.

    Secondly, I believe your "2nd Alternative Version" of your question above has omitted the rotational influence on the positional displacement vector you add into the position at each timestep. While the jet axes all remain fixed relative to the frame of reference of the ship, they do not remain fixed relative to the global coordinate system you are using to land the ship (at global coordinate [0, 0, 0]). Therefore the [Px', Py', Pz'] vector (calculated from the ship's frame of reference) must undergo appropriate rotation in all 3 dimensions prior to being applied to the global position coordinates.

    Thirdly, there are some implicit assumptions you failed to specify. For example, one dimension should be defined as the "landing depth" dimension and negative coordinate values should be prohibited (unless you accept a fiery crash). I developed a mockup model for this in which I assumed z dimension to be the landing dimension. This problem is very sensitive to initial state and the constraints placed on the jets. All of my attempts using your example initial conditions above failed to land. For example, in my mockup (without the 3d displacement vector rotation noted above), the jet constraints only allow for rotation in one direction on the z-axis. So if aZ becomes negative at any time (which is often the case) the ship is actually forced to complete another full rotation on that axis before it can even try to approach zero degrees again. Also, without the 3d displacement vector rotation, you will find that Px will only go negative using your example initial conditions and constraints, and the ship is forced to either crash or diverge farther and farther onto the negative x-axis as it attempts to maneuver. The only way to solve this is to truly incorporate rotation or allow for sufficient positive and negative jet forces.

    However, even when I relaxed your min/max force constraints, I was unable to get my mockup to land successfully, demonstrating how complex planning will probably be required here. Unless it is possible to completely formulate this problem in linear programming space, I believe you will need to incorporate advanced planning or stochastic decision trees that are "smart" enough to continually use rotational methods to reorient the most flexible jets onto the currently most necessary axes.

    Lastly, as I noted in the comments section, "On May 14, 2015, the source code for Space Engineers was made freely available on GitHub to the public." If you believe that game already contains this logic, that should be your starting place. However, I suspect you are bound to be disappointed. Most space game landing sequences simply take control of the ship and do not simulate "real" force vectors. Once you take control of a 3-d model, it is very easy to predetermine a 3d spline with rotation that will allow the ship to land softly and with perfect bearing at the predetermined time. Why would any game programmer go through this level of work for a landing sequence? This sort of logic could control ICBM missiles or planetary rover re-entry vehicles and it is simply overkill IMHO for a game (unless the very purpose of the game is to see if you can land a damaged spaceship with arbitrary jets and constraints without crashing).

提交回复
热议问题