How to create ternary contour plot in Python?

后端 未结 4 2065
余生分开走
余生分开走 2020-12-13 02:53

I have a data set as follows (in Python):

import numpy as np
A = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0, 0.1, 0.2, 0.3, 0.4, 0.2, 0.2, 0.05         


        
4条回答
  •  天命终不由人
    2020-12-13 03:38

    you as try the code below inspired by : https://matplotlib.org/gallery/images_contours_and_fields/tricontour_smooth_user.html#sphx-glr-gallery-images-contours-and-fields-tricontour-smooth-user-py

    from matplotlib.tri import Triangulation, TriAnalyzer, UniformTriRefiner
    import matplotlib.pyplot as plt
    import matplotlib.cm as cm
    import numpy as np
    from lineticks import LineTicks
    
    
    
    #-----------------------------------------------------------------------------
    # Analytical test function
    #-----------------------------------------------------------------------------
    def experiment_res(x, y):
        """ An analytic function representing experiment results """
        x = 2.*x
        r1 = np.sqrt((0.5 - x)**2 + (0.5 - y)**2)
        theta1 = np.arctan2(0.5 - x, 0.5 - y)
        r2 = np.sqrt((-x - 0.2)**2 + (-y - 0.2)**2)
        theta2 = np.arctan2(-x - 0.2, -y - 0.2)
        z = (4*(np.exp((r1/10)**2) - 1)*30. * np.cos(3*theta1) +
             (np.exp((r2/10)**2) - 1)*30. * np.cos(5*theta2) +
             2*(x**2 + y**2))
        return (np.max(z) - z)/(np.max(z) - np.min(z))
    
    #-----------------------------------------------------------------------------
    # Generating the initial data test points and triangulation for the demo
    #-----------------------------------------------------------------------------
    # User parameters for data test points
    n_test = 200  # Number of test data points, tested from 3 to 5000 for subdiv=3
    
    subdiv = 3  # Number of recursive subdivisions of the initial mesh for smooth
                # plots. Values >3 might result in a very high number of triangles
                # for the refine mesh: new triangles numbering = (4**subdiv)*ntri
    
    init_mask_frac = 0.0    # Float > 0. adjusting the proportion of
                            # (invalid) initial triangles which will be masked
                            # out. Enter 0 for no mask.
    
    min_circle_ratio = .01  # Minimum circle ratio - border triangles with circle
                            # ratio below this will be masked if they touch a
                            # border. Suggested value 0.01 ; Use -1 to keep
                            # all triangles.
    
    # Random points
    random_gen = np.random.mtrand.RandomState(seed=1000)
    #x_test = random_gen.uniform(-1., 1., size=n_test)
    
    x_test=np.array([0, 0.25, 0.5, 0.75, 1, 0.125, 0.375, 0.625,     0.875, 0.25, 0.5, 0.75, 0.375, 0.625, 0.5])
    y_test=np.array([0, 0, 0, 0, 0, 0.216506406, 0.216506406, 0.216506406, 0.216506406, 0.433012812, 0.433012812,0.433012812, 0.649519219, 0.649519219, 0.866025625
    ])
    
    #y_test = random_gen.uniform(-1., 1., size=n_test)
    z_test = experiment_res(x_test, y_test)
    
    # meshing with Delaunay triangulation
    tri = Triangulation(x_test, y_test)
    ntri = tri.triangles.shape[0]
    
    # Some invalid data are masked out
    mask_init = np.zeros(ntri, dtype=np.bool)
    masked_tri = random_gen.randint(0, ntri, int(ntri*init_mask_frac))
    mask_init[masked_tri] = True
    tri.set_mask(mask_init)
    
    
    #-----------------------------------------------------------------------------
    # Improving the triangulation before high-res plots: removing flat triangles
    #-----------------------------------------------------------------------------
    # masking badly shaped triangles at the border of the triangular mesh.
    mask = TriAnalyzer(tri).get_flat_tri_mask(min_circle_ratio)
    tri.set_mask(mask)
    
    # refining the data
    refiner = UniformTriRefiner(tri)
    tri_refi, z_test_refi = refiner.refine_field(z_test, subdiv=subdiv)
    
    # analytical 'results' for comparison
    z_expected = experiment_res(tri_refi.x, tri_refi.y)
    
    # for the demo: loading the 'flat' triangles for plot
    flat_tri = Triangulation(x_test, y_test)
    flat_tri.set_mask(~mask)
    
    
    #-----------------------------------------------------------------------------
    # Now the plots
    #-----------------------------------------------------------------------------
    # User options for plots
    plot_tri = True          # plot of base triangulation
    plot_masked_tri = True   # plot of excessively flat excluded triangles
    plot_refi_tri = False    # plot of refined triangulation
    plot_expected = False    # plot of analytical function values for comparison
    
    
    # Graphical options for tricontouring
    levels = np.arange(0., 1., 0.025)
    #cmap = cm.get_cmap(name='Blues', lut=None)
    cmap = cm.get_cmap(name='terrain', lut=None)
    
    
    f=-0.2
    e=-0.2
    ##############################################################################
    ##############################################################################
    
    
    t = np.linspace(0, 1, 100)
    xx = t/2
    yy = t*0.8660254037
    
    plt.subplots(facecolor='w')
    ax = plt.axes([-0.2, -0.2, 1.2, 1.2])
    
    traj, = ax.plot(xx, yy, c='red', lw=4)
    
    
    ax.plot(e, f)
    
    ax.set_xlim(-0.5,1.2)
    ax.set_ylim(-0.5,1.2)
    # Add major ticks every 10th time point and minor ticks every 4th;
    # label the major ticks with the corresponding time in secs.
    major_ticks = LineTicks(traj, range(0, n, 10), 10, lw=2,
                            label=['{:.2f}'.format(tt) for tt in t[::10]])
    minor_ticks = LineTicks(traj, range(0,n), 4, lw=1)
    
    
    xg=xx+0.5
    yg=np.fliplr([yy])[0]
    
    ax1 = plt.axes([-0.2, -0.2, 1.2, 1.2])
    
    
    
    traj1, = ax1.plot(xg, yg, c='Blue', lw=4)
    
    major_ticks1 = LineTicks(traj1, range(0, n, 10), 10, lw=2,
                            label=['{:.2f}'.format(tt) for tt in t[::10]])
    minor_ticks1 = LineTicks(traj1, range(0,n), 4, lw=1)
    #ax.set_xlim(-0.2,t[-1]+0.2)
    
    ax1.plot(e, f)
    ax1.set_xlim(-0.5,1.2)
    ax1.set_ylim(-0.5,1.2)
    
    
    xgg=1-t
    ygg=yy*0
    
    ax3 = plt.axes([-0.2, -0.2, 1.2, 1.2])
    
    
    
    traj2, = ax3.plot(xgg, ygg, c='green', lw=4)
    
    major_ticks2 = LineTicks(traj2, range(0, n, 10), 10, lw=2,
                            label=['{:.2f}'.format(tt) for tt in t[::10]])
    minor_ticks2 = LineTicks(traj2, range(0,n), 4, lw=1)
    #ax.set_xlim(-0.2,t[-1]+0.2)
    
    ax1.plot(e, f)
    ax1.set_xlim(-0.5,1.2)
    ax1.set_ylim(-0.5,1.2)
    
    ##############################################################################
    ##############################################################################
    
    
    ax4 = plt.axes([-0.2, -0.2, 1.2, 1.2])
    #plt.figure()
    #plt.gca().set_aspect('equal')
    plt.title("Filtering a Delaunay mesh\n" +
              "(application to high-resolution tricontouring)")
    
    # 1) plot of the refined (computed) data contours:
    
    ax4.axes.tricontour(tri_refi, z_test_refi, levels=levels,
                   colors=['0.25', '0.5', '0.5', '0.5', '0.5'],
                   linewidths=[1.0, 0.5, 0.5, 0.5, 0.5])              
    ax4.axes.tricontourf(tri_refi, z_test_refi, levels=levels, cmap=cmap)
    
    
    ax4.plot(e, f)
    
    
    #ax4.set_xlim(-0.2,1.2)
    #ax4.set_ylim(-0.2,1.2)
    
    
    # 2) plot of the expected (analytical) data contours (dashed):
    if plot_expected:
        plt.tricontour(tri_refi, z_expected, levels=levels, cmap=cmap,
                       linestyles='--')
    # 3) plot of the fine mesh on which interpolation was done:
    if plot_refi_tri:
        plt.triplot(tri_refi, color='0.97')
    # 4) plot of the initial 'coarse' mesh:
    if plot_tri:
        plt.triplot(tri, color='0.7')
    # 4) plot of the unvalidated triangles from naive Delaunay Triangulation:
    if plot_masked_tri:
        plt.triplot(flat_tri, color='red')
    
    
    ##################################################################
    ###################################################################
    ax4.annotate('Oil', xy=(0.0, -0.15), xytext=(1, -0.15),
                arrowprops=dict(facecolor='green', shrink=0.05),
                )
    
    plt.show()
    
    enter code here
    

    ternary plot

提交回复
热议问题