Not sure if this belongs in statistics, but I am trying to use Python to achieve this. I essentially just have a list of integers:
data = [300,244,543,1011,3
Here is one possible solution. You count the number of occurrences of each value in the original list. The future probability for a given value is its past rate of occurrence, which is simply the # of past occurrences divided by the length of the original list. In Python it's very simple:
x is the given list of values
from collections import Counter
c = Counter(x)
def probability(a):
# returns the probability of a given number a
return float(c[a]) / len(x)