I am using NLTK to extract nouns from a text-string starting with the following command:
tagged_text = nltk.pos_tag(nltk.Text(nltk.word_tokenize(some_string)
The Pattern library includes a function for parsing German sentences and the result includes the part-of-speech tags. The following is copied from their documentation:
from pattern.de import parse, split
s = parse('Die Katze liegt auf der Matte.')
s = split(s)
print s.sentences[0]
>>> Sentence('Die/DT/B-NP/O Katze/NN/I-NP/O liegt/VB/B-VP/O'
'auf/IN/B-PP/B-PNP der/DT/B-NP/I-PNP Matte/NN/I-NP/I-PNP ././O/O')
If you prefer the SSTS tag set you can set the optional parameter tagset="STTS"
.
Update: Another option is spacy, there is a quick example in this blog article:
import spacy
nlp = spacy.load('de')
doc = nlp(u'Ich bin ein Berliner.')
# show universal pos tags
print(' '.join('{word}/{tag}'.format(word=t.orth_, tag=t.pos_) for t in doc))
# output: Ich/PRON bin/AUX ein/DET Berliner/NOUN ./PUNCT