I\'m doing a Python project in which I\'d like to use the Viterbi Algorithm. Does anyone know of a complete Python implementation of the Viterbi algorithm? The correctness
I have modified @Rhubarb's answer for the condition where the marginal probabilities are already known (e.g by computing the Forward Backward algorithm).
def viterbi (transition_probabilities, conditional_probabilities):
# Initialise everything
num_samples = conditional_probabilities.shape[1]
num_states = transition_probabilities.shape[0] # number of states
c = np.zeros(num_samples) #scale factors (necessary to prevent underflow)
viterbi = np.zeros((num_states,num_samples)) # initialise viterbi table
best_path_table = np.zeros((num_states,num_samples)) # initialise the best path table
best_path = np.zeros(num_samples).astype(np.int32) # this will be your output
# B- appoint initial values for viterbi and best path (bp) tables - Eq (32a-32b)
viterbi[:,0] = conditional_probabilities[:,0]
c[0] = 1.0/np.sum(viterbi[:,0])
viterbi[:,0] = c[0] * viterbi[:,0] # apply the scaling factor
# C- Do the iterations for viterbi and psi for time>0 until T
for t in range(1, num_samples): # loop through time
for s in range (0,num_states): # loop through the states @(t-1)
trans_p = viterbi[:, t-1] * transition_probabilities[:,s] # transition probs of each state transitioning
best_path_table[s,t], viterbi[s,t] = max(enumerate(trans_p), key=operator.itemgetter(1))
viterbi[s,t] = viterbi[s,t] * conditional_probabilities[s][t]
c[t] = 1.0/np.sum(viterbi[:,t]) # scaling factor
viterbi[:,t] = c[t] * viterbi[:,t]
## D - Back-tracking
best_path[num_samples-1] = viterbi[:,num_samples-1].argmax() # last state
for t in range(num_samples-1,0,-1): # states of (last-1)th to 0th time step
best_path[t-1] = best_path_table[best_path[t],t]
return best_path