The time complexity to go over each adjacent edge of a vertex is, say, O(N), where N is number of adjacent edges. So, for V numbers of
Considering the following Graph we see how the time complexity is O(|V|+|E|) but not O(V*E).

Adjacency List
V E
v0:{v1,v2}
v1:{v3}
v2:{v3}
v3:{}
Operating How BFS Works Step by Step
Step1:
Adjacency lists:
V E
v0: {v1,v2} mark, enqueue v0
v1: {v3}
v2: {v3}
v3: {}
Step2:
Adjacency lists:
V E
v0: {v1,v2} dequeue v0;mark, enqueue v1,v2
v1: {v3}
v2: {v3}
v3: {}
Step3:
Adjacency lists:
V E
v0: {v1,v2}
v1: {v3} dequeue v1; mark,enqueue v3
v2: {v3}
v3: {}
Step4:
Adjacency lists:
V E
v0: {v1,v2}
v1: {v3}
v2: {v3} dequeue v2, check its adjacency list (v3 already marked)
v3: {}
Step5:
Adjacency lists:
V E
v0: {v1,v2}
v1: {v3}
v2: {v3}
v3: {} dequeue v3; check its adjacency list
Step6:
Adjacency lists:
V E
v0: {v1,v2} |E0|=2
v1: {v3} |E1|=1
v2: {v3} |E2|=1
v3: {} |E3|=0
Total number of steps:
|V| + |E0| + |E1| + |E2| +|E3| == |V|+|E|
4 + 2 + 1 + 1 + 0 == 4 + 4
8 == 8
Assume an adjacency list representation, V is the number of vertices, E the number of edges.
Each vertex is enqueued and dequeued at most once.
Scanning for all adjacent vertices takes O(|E|) time, since sum of lengths of adjacency lists is |E|.
Hence The Time Complexity of BFS Gives a O(|V|+|E|) time complexity.