As per my understanding, I have calculated time complexity of Dijkstra Algorithm as big-O notation using adjacency list given below. It didn\'t come out as it was supposed t
let n be the number of vertices and m be the number of edges.
Since with Dijkstra's algorithm you have O(n) delete-mins and O(m) decrease_keys, each costing O(logn), the total run time using binary heaps will be O(log(n)(m + n)). It is totally possible to amortize the cost of decrease_key down to O(1) using Fibonacci heaps resulting in a total run time of O(nlogn+m) but in practice this is often not done since the constant factor penalties of FHs are pretty big and on random graphs the amount of decrease_keys is way lower than its respective upper bound (more in the range of O(n*log(m/n), which is way better on sparse graphs where m = O(n)). So always be aware of the fact that the total run time is both dependent on your data structures and the input class.