Danger ... Danger Dr. Smith... Philosophical post ahead
The purpose of this post is to determine if placing the validation logic outside of my domain entiti
The validation in your example is validation of a value object, not an entity (or aggregate root).
I would separate the validation into distinct areas.
Email value object internally.I adhere to the rule that aggregates should never be in an invalid state. I extend this principal to value objects where practical.
Use createNew() to instantiate an email from user input. This forces it to be valid according to your current rules (the "user@email.com" format, for example).
Use createExisting() to instantiate an email from persistent storage. This performs no validation, which is important - you don't want an exception to be thrown for a stored email that was valid yesterday but invalid today.
class Email
{
private String value_;
// Error codes
const Error E_LENGTH = "An email address must be at least 3 characters long.";
const Error E_FORMAT = "An email address must be in the 'user@email.com' format.";
// Private constructor, forcing the use of factory functions
private Email(String value)
{
this.value_ = value;
}
// Factory functions
static public Email createNew(String value)
{
validateLength(value, E_LENGTH);
validateFormat(value, E_FORMAT);
}
static public Email createExisting(String value)
{
return new Email(value);
}
// Static validation methods
static public void validateLength(String value, Error error = E_LENGTH)
{
if (value.length() < 3)
{
throw new DomainException(error);
}
}
static public void validateFormat(String value, Error error = E_FORMAT)
{
if (/* regular expression fails */)
{
throw new DomainException(error);
}
}
}
Validate "external" characteristics of the Email value object externally, e.g., in a service.
class EmailDnsValidator implements IEmailValidator
{
const E_MX_MISSING = "The domain of your email address does not have an MX record.";
private DnsProvider dnsProvider_;
EmailDnsValidator(DnsProvider dnsProvider)
{
dnsProvider_ = dnsProvider;
}
public void validate(String value, Error error = E_MX_MISSING)
{
if (!dnsProvider_.hasMxRecord(/* domain part of email address */))
{
throw new DomainException(error);
}
}
}
class EmailDomainBlacklistValidator implements IEmailValidator
{
const Error E_DOMAIN_FORBIDDEN = "The domain of your email address is blacklisted.";
public void validate(String value, Error error = E_DOMAIN_FORBIDDEN)
{
if (/* domain of value is on the blacklist */))
{
throw new DomainException(error);
}
}
}
Advantages:
Use of the createNew() and createExisting() factory functions allow control over internal validation.
It is possible to "opt out" of certain validation routines, e.g., skip the length check, using the validation methods directly.
It is also possible to "opt out" of external validation (DNS MX records and domain blacklisting). E.g., a project I worked on initially validated the existance of MX records for a domain, but eventually removed this because of the number of customers using "dynamic IP" type solutions.
It is easy to query your persistent store for email addresses that do not fit the current validation rules, but running a simple query and treating each email as "new" rather than "existing" - if an exception is thrown, there's a problem. From there you can issue, for example, a FlagCustomerAsHavingABadEmail command, using the exception error message as guidance for the user when they see the message.
Allowing the programmer to supply the error code provides flexibility. For example, when sending a UpdateEmailAddress command, the error of "Your email address must be at least 3 characters long" is self explanatory. However, when updating multiple email addresses (home and work), the above error message does not indicate WHICH email was wrong. Supplying the error code/message allows you to provide richer feedback to the end user.