Given an array A of N integers we draw N discs in a 2D plane, such that i-th disc has center in (0,i) and a radius
An Implementation of Idea stated above in Java:
public class DiscIntersectionCount {
public int number_of_disc_intersections(int[] A) {
int[] leftPoints = new int[A.length];
for (int i = 0; i < A.length; i++) {
leftPoints[i] = i - A[i];
}
Arrays.sort(leftPoints);
// System.out.println(Arrays.toString(leftPoints));
int count = 0;
for (int i = 0; i < A.length - 1; i++) {
int rpoint = A[i] + i;
int rrank = getRank(leftPoints, rpoint);
//if disk has sifnificant radius, exclude own self
if (rpoint > i) rrank -= 1;
int rank = rrank;
// System.out.println(rpoint+" : "+rank);
rank -= i;
count += rank;
}
return count;
}
public int getRank(int A[], int num) {
if (A==null || A.length == 0) return -1;
int mid = A.length/2;
while ((mid >= 0) && (mid < A.length)) {
if (A[mid] == num) return mid;
if ((mid == 0) && (A[mid] > num)) return -1;
if ((mid == (A.length - 1)) && (A[mid] < num)) return A.length;
if (A[mid] < num && A[mid + 1] >= num) return mid + 1;
if (A[mid] > num && A[mid - 1] <= num) return mid - 1;
if (A[mid] < num) mid = (mid + A.length)/2;
else mid = (mid)/2;
}
return -1;
}
public static void main(String[] args) {
DiscIntersectionCount d = new DiscIntersectionCount();
int[] A =
//{1,5,2,1,4,0}
//{0,0,0,0,0,0}
// {1,1,2}
{3}
;
int count = d.number_of_disc_intersections(A);
System.out.println(count);
}
}