I need to fit RandomForestRegressor from sklearn.ensemble.
forest = ensemble.RandomForestRegressor(**RF_tuned_parameters)
model = fo
With neuraxle, you can easily solve this :
p = Pipeline([
# expected outputs shape: (n, 1)
OutputTransformerWrapper(NumpyRavel()),
# expected outputs shape: (n, )
RandomForestRegressor(**RF_tuned_parameters)
])
p, outputs = p.fit_transform(data_inputs, expected_outputs)
Neuraxle is a sklearn-like framework for hyperparameter tuning and AutoML in deep learning projects !