"I argued that there could not exist a deterministic Turing machine that always won or stalemated at chess."
You're not quite right. There can be such a machine. The issue is the hugeness of the state space that it would have to search. It's finite, it's just REALLY big.
That's why chess falls back on heuristics -- the state space is too huge (but finite). To even enumerate -- much less search for every perfect move along every course of every possible game -- would be a very, very big search problem.
Openings are scripted to get you to a mid-game that gives you a "strong" position. Not a known outcome. Even end games -- when there are fewer pieces -- are hard to enumerate to determine a best next move. Technically they're finite. But the number of alternatives is huge. Even a 2 rooks + king has something like 22 possible next moves. And if it takes 6 moves to mate, you're looking at 12,855,002,631,049,216 moves.
Do the math on opening moves. While there's only about 20 opening moves, there are something like 30 or so second moves, so by the third move we're looking at 360,000 alternative game states.
But chess games are (technically) finite. Huge, but finite. There's perfect information. There are defined start and end-states, There are no coin-tosses or dice rolls.