Match keywords in pandas column with another list of elements

前端 未结 2 1975
慢半拍i
慢半拍i 2020-12-11 19:11

I have a pandas dataframe as:

word_list
[\'nuclear\',\'election\',\'usa\',\'baseball\']
[\'football\',\'united\',\'thriller\']
[\'marvels\',\'hollywood\',\'s         


        
2条回答
  •  挽巷
    挽巷 (楼主)
    2020-12-11 20:03

    You can flatten dictionary of lists first and then lookup by .get with miscellaneous for non matched values, then convert to sets for unique categories and convert to strings by join:

    movies=['spiderman','marvels','thriller']
    sports=['baseball','hockey','football']
    politics=['election','china','usa']
    d = {'movies':movies, 'sports':sports, 'politics':politics}
    d1 = {k: oldk for oldk, oldv in d.items() for k in oldv}
    
    f = lambda x: ','.join(set([d1.get(y, 'miscellaneous') for y in x]))
    df['matched_list_names'] = df['word_list'].apply(f)
    print (df)
    
                                     word_list             matched_list_names
    0       [nuclear, election, usa, baseball]  politics,miscellaneous,sports
    1             [football, united, thriller]    miscellaneous,sports,movies
    2  [marvels, hollywood, spiderman, budget]           miscellaneous,movies
    

    Similar solution with list comprehension:

    df['matched_list_names'] = [','.join(set([d1.get(y, 'miscellaneous') for y in x])) 
                                for x in df['word_list']]
    

提交回复
热议问题