Single pcolormesh with more than one colormap using Matplotlib

后端 未结 2 1074
猫巷女王i
猫巷女王i 2020-12-11 13:11

I\'m creating a GUI where there is live \'point in time\' data for several records (\"things\") and fields. records are comparable based on field, but fields are not necessa

2条回答
  •  轻奢々
    轻奢々 (楼主)
    2020-12-11 14:06

    Implementation of @ImportanceOfBeingErnest solution:

    Used the stacking of colormaps to create a custom colormap of maps. Basically my function now takes tuples of ([list of columns],multiplier,colormap to apply) and stacks the unique colormaps and groups the percentile data to match the individual colormaps (endpoints were tricky to avoid overlap of coloring). I probably didn't implement it super efficiently, but it works well:

    def DFPercentiles_hmapshift(df,bycols=True):
        p=pd.DataFrame(index=df.index,columns=df.columns)
        if bycols!=True:
            for j in df.index:
                for i in df.columns:
                    pct=(df.loc[j,i]-min(df.loc[j,:]))/((max(df.loc[j,:])-min(df.loc[j,:]))*1.)
                    pct=pct-(pct-0.5)*1./40 #have to rescale it to account for endpoints of cmaps
                    p.loc[j,i]=pct
                    #print '('+str(max(p.loc[j,:]))+', '+str(min(p.loc[j,:]))+')'
    
        else:
            for i in df.index:
                for j in df.columns:
                    pct=(df.loc[i,j]-min(df.loc[:,j]))/((max(df.loc[:,j])-min(df.loc[:,j]))*1.)
                    pct=pct-(pct-0.5)*1./40 #have to rescale it to account for endpoints of cmaps
                    p.loc[i,j]=pct
                    #print '('+str(max(p.loc[:,j]))+', '+str(min(p.loc[:,j]))+')'
        return p
    
    def Heatmap(df,figsize='auto',ccmaps=[(['Default'],0,'coolwarm')]):
        if figsize=='auto':
            figsize=[shape(df)[1],shape(df)[0]/2]
        fig=figure(figsize=figsize)
        #pdf=array(DFPercentiles(df,bycols=True)).astype(float)[::-1]
        pdf=DFPercentiles_hmapshift(df,bycols=True)
        if len(ccmaps)==1:
            cmap=ccmaps[0][2]
        else:
            cmapl=[]
            for x in ccmaps:
                if x[1]!=0:
                    for y in x[0]:
                        pdf[y]=pdf[y]+x[1]
                cmapl.append(getattr(plt.cm,x[2])(np.linspace(0,1,256,endpoint=False)+0.5/256.))
            pdf=np.divide(pdf,len(ccmaps))
            cs=np.vstack(cmapl)
            cmap=matplotlib.colors.LinearSegmentedColormap.from_list("custom",cs)
        pdf=array(pdf).astype(float)[::-1]
        plt.pcolormesh(pdf,cmap=cmap,alpha=0.8)
        plt.yticks(arange(0.5,len(df)),df.index[::-1])
        plt.xticks(arange(0.5,len(df.columns)),df.columns)
        for y in range(df.shape[0]):
            for x in range(df.shape[1]):
                plt.text(x + 0.5, y + 0.5, '%.3f' % df[::-1].iloc[y, x],
                         horizontalalignment='center',
                         verticalalignment='center',
                         )
        return plt
    
    hmap=Heatmap(mydf,ccmaps=[(['Default'],0,'RdBu_r'),(['Field3','Field4'],1,'Greens'),
                         (['Field0'],2,'Greys')])
    hmap.show()
    

    for the beautiful (ok, it's just an example!) result:

提交回复
热议问题