I get tweets from kafka topic with Avro (serializer and deserializer). Then i create a spark consumer which extracts tweets in Dstream of RDD[GenericRecord]. Now i want to c
Even though something like this may help you,
val stream = ...
val dfStream = stream.transform(rdd:RDD[GenericRecord]=>{
val df = rdd.map(_.toSeq)
.map(seq=> Row.fromSeq(seq))
.toDF(col1,col2, ....)
df
})
I'd like to suggest you an alternate approach. With Spark 2.x you can skip the whole process of creating DStreams. Instead, you can do something like this with structured streaming,
val df = ss.readStream
.format("com.databricks.spark.avro")
.load("/path/to/files")
This will give you a single dataframe which you can directly query. Here, ss is the instance of spark session. /path/to/files is the place where all your avro files are being dumped from kafka.
PS: You may need to import spark-avro
libraryDependencies += "com.databricks" %% "spark-avro" % "4.0.0"
Hope this helped. Cheers