I\'m working to finish a math problem that approximates the square root of a number using Newton\'s guess and check method in Python. The user is supposed to enter a number,
Implementation of the newton method:
It should be fairly easy to add little tweaks to it when needed. Try, and tell us when you get stuck.
from math import *
def average(a, b):
return (a + b) / 2.0
def improve(guess, x):
return average(guess, x/guess)
def good_enough(guess, x):
d = abs(guess*guess - x)
return (d < 0.001)
def square_root(guess, x):
while(not good_enough(guess, x)):
guess = improve(guess, x)
return guess
def my_sqrt(x):
r = square_root(1, x)
return r
>>> my_sqrt(16)
4.0000006366929393
NOTE: you will find enough exaples on how to use raw input here at SO or googling, BUT, if you are counting loops, the c=0
has to be outside the loop, or you will be stuck in an infinite loop.
Quiqk and dirty, lots of ways to improve:
from math import *
def average(a, b):
return (a + b) / 2.0
def improve(guess, x):
return average(guess, x/guess)
def square_root(guess, x, c):
guesscount=0
while guesscount < c :
guesscount+=1
guess = improve(guess, x)
return guess
def my_sqrt(x,c):
r = square_root(1, x, c)
return r
number=int(raw_input('Enter a positive number'))
i_guess=int(raw_input('Enter an initial guess'))
times=int(raw_input('How many times would you like this program to improve your initial guess:'))
answer=my_sqrt(number,times)
print 'sqrt is approximately ' + str(answer)
print 'difference between your guess and sqrt is ' + str(abs(i_guess-answer))