I have been hearing a lot about Project Euler so I thought I solve one of the problems in C#. The problem as stated on the website is as follows:
If w
You can do something like this:
Func Euler = total=>
new List() {3,5}
.Select(m => ((int) (total-1) / m) * m * (((int) (total-1) / m) + 1) / 2)
.Aggregate( (T, m) => T+=m);
You still have the double counting problem. I'll think about this a little more.
Edit:
Here is a working (if slightly inelegant) solution in LINQ:
var li = new List() { 3, 5 };
Func Summation = (total, m) =>
((int) (total-1) / m) * m * (((int) (total-1) / m) + 1) / 2;
Func Euler = total=>
li
.Select(m => Summation(total, m))
.Aggregate((T, m) => T+=m)
- Summation(total, li.Aggregate((T, m) => T*=m));
Can any of you guys improve on this?
Explanation:
Remember the summation formula for a linear progression is n(n+1)/2. In the first case where you have multiples of 3,5 < 10, you want Sum(3+6+9,5). Setting total=10, you make a sequence of the integers 1 .. (int) (total-1)/3, and then sum the sequence and multiply by 3. You can easily see that we're just setting n=(int) (total-1)/3, then using the summation formula and multiplying by 3. A little algebra gives us the formula for the Summation functor.