I have a set of data x which consists of 12 columns and 167 rows. The first column is compound Id for each row. I want to run a t.test for 3 column
Another alternative is using a package.
Your data:
df <- rbind(c(27612820, 22338050, 15359640, 19741350, 18726880, 18510800, 10914980, 12071660, 16036180, 16890860, 16066960, 16364300),
c(7067206, 7172234, 5933320, 136272600, 131596800, 134717600, 6102838, 7186256, 6770344, 140127100, 155341300, 151748000),
c(3151398, 2141378, 1240904, 11522180, 8907711, 9842342, 1677299, 2265826, 2942991, 11690360, 12552660, 12102620)
)
df <- data.frame(df)
rownames(df) <- c("alanine", "arginine", "asparagine")
colnames(df) <- c("AC-1", "AC-2", "AC-3", "AM-1", "AM-2", "AM-3", "SC-1", "SC-2", "SC-3", "SM-1", "SM-2", "SM-3")
Then to run a t-test on every row between AC and SC groups:
library(matrixTests)
> row_t_welch(df[,c("AC-1", "AC-2", "AC-3")], df[,c("SC-1", "SC-2", "SC-3")])
obs.x obs.y obs.tot mean.x mean.y mean.diff var.x var.y stderr df statistic pvalue conf.low conf.high alternative mean.null conf.level
alanine 3 3 6 21770170 13007607 8762563.3 37776970798900 7213669482133 3872580.5 2.736945 2.26271945 0.1171389 -4259692 21784819 two.sided 0 0.95
arginine 3 3 6 6724253 6686479 37774.0 471939373529 298723602417 506840.9 3.807645 0.07452832 0.9443398 -1397926 1473474 two.sided 0 0.95
asparagine 3 3 6 2177893 2295372 -117478.7 913496858185 401148784303 661978.3 3.472571 -0.17746605 0.8690016 -2070931 1835973 two.sided 0 0.95