I would like to run a number of jobs using a pool of processes and apply a given timeout after which a job should be killed and replaced by another working on the next task.
Currently the Python does not provide native means to the control execution time of each distinct task in the pool outside the worker itself.
So the easy way is to use wait_procs
in the psutil module and implement the tasks as subprocesses.
If nonstandard libraries are not desirable, then you have to implement own Pool on base of subprocess module having the working cycle in the main process, poll()
- ing the execution of each worker and performing required actions.
As for the updated problem, the pool becomes corrupted if you directly terminate one of the workers (it is the bug in the interpreter implementation, because such behavior should not be allowed): the worker is recreated, but the task is lost and the pool becomes nonjoinable. You have to terminate all the pool and then recreate it again for another tasks:
from multiprocessing import Pool
while True:
pool = Pool(processes=4)
jobs = pool.map_async(Check, range(10))
print "Waiting for result"
try:
result = jobs.get(timeout=1)
break # all clear
except multiprocessing.TimeoutError:
# kill all processes
pool.terminate()
pool.join()
print result
Pebble is an excellent and handy library, which solves the issue. Pebble is designed for the asynchronous execution of Python functions, where is PyExPool is designed for the asynchronous execution of modules and external executables, though both can be used interchangeably.
One more aspect is when 3dparty dependencies are not desirable, then PyExPool can be a good choice, which is a single-file lightweight implementation of Multi-process Execution Pool with per-Job and global timeouts, opportunity to group Jobs into Tasks and other features.
PyExPool can be embedded into your sources and customized, having permissive Apache 2.0 license and production quality, being used in the core of one high-loaded scientific benchmarking framework.