The operation that I want to do is similar to merger. For example, with the inner
merger we get a data frame that contains rows that are present in the first AN
You could run into errors if your non-index column has cells with NaN.
print df1
Team Year foo
0 Hawks 2001 5
1 Hawks 2004 4
2 Nets 1987 3
3 Nets 1988 6
4 Nets 2001 8
5 Nets 2000 10
6 Heat 2004 6
7 Pacers 2003 12
8 Problem 2112 NaN
print df2
Team Year foo
0 Pacers 2003 12
1 Heat 2004 6
2 Nets 1988 6
3 Problem 2112 NaN
new = df1.merge(df2,on=['Team','Year'],how='left')
print new[new.foo_y.isnull()]
Team Year foo_x foo_y
0 Hawks 2001 5 NaN
1 Hawks 2004 4 NaN
2 Nets 1987 3 NaN
4 Nets 2001 8 NaN
5 Nets 2000 10 NaN
6 Problem 2112 NaN NaN
The problem team in 2112 has no value for foo in either table. So, the left join here will falsely return that row, which matches in both DataFrames, as not being present in the right DataFrame.
Solution:
What I do is to add a unique column to the inner DataFrame and set a value for all rows. Then when you join, you can check to see if that column is NaN for the inner table to find unique records in the outer table.
df2['in_df2']='yes'
print df2
Team Year foo in_df2
0 Pacers 2003 12 yes
1 Heat 2004 6 yes
2 Nets 1988 6 yes
3 Problem 2112 NaN yes
new = df1.merge(df2,on=['Team','Year'],how='left')
print new[new.in_df2.isnull()]
Team Year foo_x foo_y in_df1 in_df2
0 Hawks 2001 5 NaN yes NaN
1 Hawks 2004 4 NaN yes NaN
2 Nets 1987 3 NaN yes NaN
4 Nets 2001 8 NaN yes NaN
5 Nets 2000 10 NaN yes NaN
NB. The problem row is now correctly filtered out, because it has a value for in_df2.
Problem 2112 NaN NaN yes yes